Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

An Integrated Approach to Motion and Sound

JAMES K. HAHN, JOE GEIGELT, JONG WON LEE, LARRY GRITZ,
TAPIO TAKALA™, AND SUNEIL MISHRA

Department of Electrical Engineering and Computer Science
The George Washington University
Washington, DC, 20052, U.SA.

hahn|geigel [won|gritz|suneil @seas.gwu.edu

* Department of Computer Science
Helsinki University of Technology
02150 Espoo, Finland
tta@cs.hut.fi

TPittsburgh Supercomputing Center
Pittsburgh, PA 15213, U.SA.

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
1995

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLEAND SUBTITLE

An Integrated Approach to Motion and Sound

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical Engineering and Computer Science The George
Washington University Washington, DC 20052

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT
unclassified unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

28

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

SUMMARY

Until recently, sound has been given little attention in computer graphics and related domains
of computer animation and virtual environments, although sounds which are properly synchronized to
motion provide a great deal of information about events in the environment. Sounds are often not
properly synchronized because the sounds and the phenomena that caused the sounds are not
considered in an integrated way. In this paper, we present an integrated approach to motion and
sound as it applies to computer animation and virtual environments. The key to this approach is
synchronization by mapping the motion parameters to sound parameters so that the sound changes as
a result of changes in the motion. This is done by representing sounds using a technique for functional
composition analogous to the " shade trees’ which we call timbre trees. These timbre trees are used as a
part of a sound description language that is analogous to scene description languages like RenderMan.
Using this methodology, we have produced convincing sound effects for a wide variety of animated

scenes including the automatic generation of background music.

KEY WORDS Computer animation Motion Multimedia Sound Soundtrack Virtual

environments

INTRODUCTION

Sounds are an integral part of the environment. They are caused by motions in the world
and in turn cause changes to the world. Characteristics of sounds produced are directly linked with
the phenomenon that caused the sounds. Sounds are a so shaped by the environment in which they
propagate. Therefore energies that represent the visible and audible spectrum that permeate the
world are very much correlated. In computer graphics (image rendering, computer animation,
virtual environments, etc.) the concentration has been in rendering the visible spectrum. When
sounds have been added, the correlation between the two has been generally weak. Sounds are
usually generated independent from the events that actually caused them. The result is that what we
see and what we hear are from two different "worlds." The resultant confusion detracts from the
total experience.

A large body of work exists in various domains that relate to sound. The issues in sound
generation have long been studied in the field of computer musicl->. Parameterization and
synchronization of sound has been investigated in relation to user interfaces®’, data sonification®
and computer animation8:9. What is lacking, however, is a single framework that integrates
arbitrary sounds and motions for computer animation and virtual environments. The only previous

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

related work in the graphics literaturel© tried to address this problem. However the important issue
that the approach did not address was a general method to parameterize sounds which is essentia
for establishing the mapping between motion and sound.

In this paper, we propose such a framework and describe a methodology to view sounds
and motionsin an integrated way (Figure 1). The fundamental approach of this paper is to describe
sounds as parameterizable structures. These structures, called timbre trees!?, allow sounds to be
represented so that the sound parameters correspond in some way to the phenomena that are
responsible for creating the sounds. For example, these mappings may be physically-based for
object-to-object interactions like scraping or collisions. These mappings may also be purely
imaginary such as when the motions are used to generate background music. These parameters
allow atimbre tree to span a class of sounds. When atimbre tree isinstantiated, the parameters of
the trees are bound to the parameters from the motion control system. As the animation proceeds
the changing parameters coming from the motion cause changes in the associated sounds. In this
way the motions and the sounds that they produce are intimately linked. Environmental effects are
simulated by attaching additional nodes to the timbre tree. The final soundtrack is rendered by
evaluating the resultant tree.

a4 R
motion -l— —-synchronization— — - sound
motion @~~~ mapping ——— timbre tree
parameters parameters
N [J
Y Y
(image rendering) é sound rendering)

attach rendering
nodes

final timbre tree

evaluate tree

image sound

Figure 1. Integrating sound and motion

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123
SOUND GENERATION

The most important part of sound representation and synthesisis the ability to parameterize
sounds so that we are able to link these parameters to the motions that are responsible for
producing sounds. Sounds can be parameterized by their attributes such as amplitude, pitch, etc.
We can use such parameterization for sampled sounds. However, it becomes difficult to map these
parameters to motions because it is equivalent to "reverse engineering” (i.e. determining how the
motions produced the sounds from the sounds themselves). We can aso generate sounds based
on an idea of the mechanism behind them. There has been work in synthesizing auditory icons that
are parameterizable along the attributes of the events responsible for the generation of soundsin
user interfaces’. Although the application is directed toward giving the users specific information
associated with specific interface events, the approach parallels our work. However, it lacks a
general methodology to represent and map sounds to arbitrary motions.

Functional composition of sounds has been explored in a number of computer music
systems including MUSIC V, Csound, cmusic, and, Fuguel-4. There has also been a number of
approaches used for generating sounds such as Fourier synthesis, signal multiplication, filtering
(subtractive synthesis), and frequency modulation. These approachesin computer music, although
related to our approach, do not address the issue of representing general sounds so that their
parameters correspond to the phenomena that caused them. This is essential in order to
synchronize the sounds to the motion.

In this paper, we describe a flexible, general, and powerful way to use functional
composition to parameterize sounds based on motion using a representation called timbre trees.

Representation using Timbre Trees

Timbre trees are analogous to shade trees!? in image synthesis. The main idea behind
shade treesis afunctional composition that allows the flexible integration of various shading and
texturing techniques. The advantage in using a tree structure is the modularity and simplicity of
composing an endless variety of techniques. Timbre trees operate in a similar fashion. Nodes of
the tree operate on other timbre trees, representations of sounds (including sampled sounds), or on
external parameters. Standard mathematical functions as well as several special-purpose functions
useful for sound synthesis, such as a number of elementary waveforms (sawtooth, triangle,
square, sine), several types of noise (white noise, Perlin noisel3, etc.), and some signal processing
functions (filtering, convolution) have been implemented.

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

A timbre tree with a set of associated parameters can be seen as an abstraction of a class of
sounds. The tree, evaluated with a specific set of parameter values, can be seen as a particular
instantiation of the class. Thus, the user can easily generate new classes of sounds based on
heuristics and/or libraries of trees and elementary nodes. By evaluating a tree with a time
dependent set of parameters, the characteristics of the sound can be changed "on the fly."

Growing Timbre Trees

Timbre trees provide a convenient way for animators to create sounds. We illustrate a
typical design process through an example for generating a timbre tree that represents the buzzing
sound of behaviorally-controlled bees (Figure 2). We use a general idea of how bees actually make
sound with their wings to construct a plausible procedural representation. A bee would tend to
push its wings down slowly, then lift them up quickly, repeating this process at some frequency.
Thus, our first guess is a sawtooth wave of a particular frequency. To avoid an instrument-like
pure tone, the frequency is continuously deviated about its mean, so it is represented by avarying
frequency given by a sum of a mean frequency and a high frequency noise. Even a noisy toneis
dull for abee, if the mean frequency is constant. A living creature's continuously varying activity
can be simulated by defining the mean frequency as a nominal frequency plus a low frequency
noise resulting from a behavioral, second-order Markov process. One particular tree represents an
instance of a sound (e.g. one bee performing a particular activity), but the tree structure itself
represents an entire class of sounds (e.g. different kind of bees, different insect sounds, or even
chain saws).

The example illustrates an important goal of the sound generation and representation
system. Since the timbre tree of the sound was derived by the animator from a general idea of how
the sound was produced, the parameters associated with the tree can readily be mapped to
parameters of the motion responsible for the sound. It is not the ability to generate sounds that is
important but the ability to parameterize the sounds so that it can be mapped to the motion.

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

1. basic waveform: @

4)
+
2. making it a "noisy tone":
mean-freq @
- J
4)

3. later defining a subtree,
describing the continuously
varying activity of a busy bee:

nominal-freq

.

assigned randomly a behavioral,
4. initializing and using it: for each bee second-order
at the beginning ~ Markov process

Figure 2. Timbre tree design process for bee sounds

One simple but extremely general timbre tree is one for Fourier synthesis. In this case, a
number of frequencies are added together to generate the desired sound. Such a synthesis was
shown to be effective in cases where the modes of vibration are simple such as guitar stringst?.
M ore sophisticated modal analysis can be applied based on physical properties. The advantage of
this approach is that we can easily map physical attributes to sound parameters. For example, there
exists smple models for the modal analysis of the frequency components of hollow tubes14:

f,=TK JEr30112, 52, 72, ... (2n+1)2
n 8L2“/p[(2n+1)?]

where L is the length, E the elasticity, p the density, and K is the radius of gyration which isthe
square of the tube's outer diameter over the inner diameter. We used such a formulato generate
wind chime sounds (EXAMPLEYS).

For shading calculations in image rendering, an ad hoc heuristic such as Phong
illumination may not be physically correct, but is fast and accurate enough for most purposes.
Similarly for sound rendering, rigorous physical simulation is not practical for many sounds, nor
isit pragmatic, since even an astute listener may not recognize the difference between a physically
simulated sound and a heuristic procedural sound. For this reason, timbre trees for many common
sounds could be developed by deriving a heuristic from a rough notion of how the sound is

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

actually produced by a real physical system. These heuristics could be used to determine the
parameterization for the sounds so that they can be mapped to the motion events.

For sounds generated by the interactions of physical objects, we have constructed a timbre
tree for a class of physical objects and excitation modes (e.g. colliding, sliding, rolling)1®. For
collision sounds, we can use the Fourier synthesis technique. The modes of vibrations are
sufficiently complex that they should be represented as a statistical distribution:

signd (t):i ecat gin(uwt)

where the wj correspond to a set of random frequencies and ¢ a damping term. A timbre tree that
correspondsto thisis givenin Figure 3a.

<«
@
low frequency
@ @ noise
(Fe) (9
ool D

number of frequency range
frequencies

() Timbre Tree for collision sound (b) Timbre Tree for wind sound

Figure 3. Timbre tree examples. The darkened nodes represent parameters

In this tree, the number of frequency components (n_freq), the range of the random frequencies
(given by base and max) and a damping ratio (damp_ratio) are given as parameters. The
specialized node rvector returns a static vector of random values within the given range. The decay
rate of each frequency component is set by the node damp as being proportional to the frequency.
Thisis based on the observation that energy dissipation within the material is proportional to the
velocity. Thus high frequency vibrations that undergo high speed deformations die out sooner. A
combine node sums a vector argument corresponding to the frequencies and weights of the
vibration modes and returns a single scalar value. Each of these parameters map to events and
physical attributes. Different combinations of parameter values result in a surprising variety of

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

sounds within this class including bell sounds, wood-like sounds, and metallic sounds (like the
striking of acymbal).

Using a similar technique, we generated wind sounds by multiplying a 1/f noise signal
with alow frequency noise function (Figure 3b). The amplitude parameter (amp) can map to wind
force from an animation. The frequency distribution (freq) can be used to generate different types
of wind sounds.

We found that deriving these heuristics was somewhat of alearned (and developable) skill,
much asit isfor writing procedural shaders in image rendering. Once a user had developed severa
of these sounds and understood how combinations of functions lead to particular families of
sounds, it became easier to develop new sound families and instances.

Many times in the development of timbre trees (especially when using a heuristic
approach), we would find that we had constructed a timbre tree which was obviously an incorrect
instance of the class that we wanted. For example, at one point we had a perfect mosquito sound,
but what we really wanted was a bee. Or we would have atimbre tree which would sound almost
right, but would be incorrect in away which eluded quantification. Or perhaps we would have the
correct instance, but wanted to explore other sounds of that class. To help usin these situations, we
developed tools that make use of evolutionary algorithms as a form of computer-aided search
through these function classes.

Genetic programming (GP) is a method of optimization which utilizes evolutionary
concepts such as reproduction, mutation, and natural selection to discover useful computer
programs or formulaslé. Sims has used a kind of GP to explore procedural textures, which were
represented by LISP-like expressionsl’. Since timbre trees can also be represented as L1SP-like
programs, we can extend this technique to the sound domain. Using this technique, we have been
able explore sounds within a class (like mosquitos, chain saws, etc.) by varying the parameter
values within a particular timbre tree. We have also produced entirely different timbre trees with
the same set of parameters that represent different classes of sounds.

SYNCHRONIZATION

The link between the image and sound domains is defined via synchronization.
Synchronization involves not only timing (when sounds are to occur), but also the mapping of
motion parameters to those of sounds (how sounds are to be shaped). Once a sound class has been
defined and its parameters determined using a timbre tree, synchronization is achieved by

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

instantiating individual sounds by binding the sound class parameters with appropriate parameters
from a motion control system. For cases where a sound varies continuously with the motion, we
introduce the notion of a time dependent variable. These variables represent signals which are
continuously changing in time. Supplying atime dependent variable as an instantiation value to a
sound class results in a sound which will also vary continuously, synchronized to the continuous
change of the signal represented by the variable.

In using time dependent variables, the values that define the time varying signal are usually
calculated by the motion control at each animation frame. Since the temporal sampling granularity
of sound is much finer than that of images (8000Hz - 44100Hz as compared to 30Hz),
interpolation is used to find values of the time dependent variable for times between animation
frames.

Sonic Scene Description Language

Using a Sonic Scene Description Language, an animator or a motion control system can
describe what is occuring in the sound domain. The description language is analogous to scene
description languages such as RenderMan8. Once created, this description is fed to a renderer
which produces the final soundtrack. Thus the synchronization process which is represented by the
sonic scene description is independent of the rendering process.

We have developed such a language that allows for the definition of sound classes using
timbre trees, the instantiation of individual sounds, the starting and stopping of these instantiated
sounds, the definition of time dependent variables, and the specification of their keyframed values.
Physical object data that may be useful in sound rendering (e.g. the positions, orientations, and
attributes of microphones, sound sources, and other objects in 3-D space) can also be specified
using the language. Like most visual scene description languages, our language includes both a
textual and a functional interface. Thus the sonic scene can be described using a text file or a
program written in C++. Using the functional interface, the sonic scene may be output directly
from amotion control system.

For example, the sonic scene for a simple animation of two colliding cubes is described
using the functiona interface in Figure 4. Functions beginning with sr are utility routines used to
specify the sonic scene. Note that these routines can be incorporated directly into the application
performing the motion control. This example is typical of how these routines might be used in a
physically based animation system. The timbre tree presented in Figure 3ais used as the definition
for the class of collision sounds. Although each of the cubes is of a different material (one is
wood, the other metal), the same tree can be used for creating the sounds generated by either of the

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

cubes. At each collision detected by the motion control, a collision sound isinstantiated, started and
thus introduced into the sonic scene. Different instances of the collision class are created by
supplying the tree with different sets of instantiation parameters dependent upon the material of
each cube. The force of the collision, returned by the motion control, guides the amplitude of the
collision sounds. Note that, although not illustrated, time dependent variables may also be supplied
as arguments during sound instantiation.

The sonic scene description, when interpreted, will produce a series of timbre trees, one for
each sound instantiation. These trees will essentially be clones of the tree defining the class except
that leaf nodes, representing timbre tree parameters, will be replaced with nodes representing the
appropriate argument values. Time dependent variables are represented as keyframe nodes which
perform the proper interpolation of key values. A specialized timer node is placed at the root of
each instantiated tree and acts as a switch, indicating when the sound is to be turned on and off.
These trees will later be combined and evaluated during the rendering phase.

Mapping motion parametersto music

We can extend the methodology to synchronize background musical soundtracks with
motion-control parameters. This could mean generating motion from sounds or creating
soundtracks from the motion, which is the approach that we explored. Our aim was to generate
soundtracks that are both interesting, and intrinsically based on the motion parameter values. Such
a technique has been previously explored1®, however, in this previous work, the very limited
correlation between the motion and sound was specified manually.

We apply transformations to motion parameters to produce a musical score which can be
considered another example of a sonic scene description language. Performance information is
supplied within the score, but the actual musical output is dependent on the nature of the rendition
of the score. Any motion control parameters, or combination of motion control parameters may be
employed in generating a musical score. In general, the introduction of more complex mappings
creates scores that tend to reflect the motions of objects less distinctly, but adds subtlety and
character to the music produced. These resultant scores often appear far more "composed” in the
traditional sense, than ssimply reflecting the motion in some automated way. The transformations
used may be based on heuristics, or on simple musical or physical rules or dependencies.
Similarly, any musical parameters or structures may be mapped to the motion parameters.
Minimally, only musical pitches need be output in order to produce a score. In addition, some
concept of instrumentation is necessary. The obvious methodology is to assign one part to each
object for which parameter values are available.

10

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

/*

* declare a collision sound class defined by the tinbre tree
* found in file figure3a.tt

*/

SrSoundd ass collision = SrTinbreTree ("figure3a.tt");

/*

* animation loop - t is a global clock used in guiding the
* simulation...frame rate is 30 frames/sec

*/

for (float t =0.0; t <simulation_length; t += 0.0333) {

/* motion of each cube is deternined and col lision(s)
detected by notion control. Force of each collision is obtained */
notion_and_col |i sion_detection (...);

for each collision {
float force = obtain_collision_force (...);

i f (wooden_cube_col | ision) {
/* instantiate a wood col lision sound. Wod sound is created by
summi ng nany frequencies that danp out quickly */
Sr Sound wood _col lision =

SrinstantiateSound (collision, /1 sound cl ass
"anp", SR _CONSTANT, force, // anp depends on force
"n_freq", SR _CONSTANT, 500, // n freqg = 500

"base", SR_CONSTANT, 5000, // base freq = 5000
"danp_rati 0", SR CONSTANT, 2.6, // danp ratio = 2.6
NULL) ; I/ end of paraneter Iist

" ax” SR_CONSTANT, 10000, // nax_freq = 10000

/* start up this instantiated sound at tine corresponding to
current frame */
SrStart Sound (wood_col lision, t);

}

if (metal _cube_collision) {
/* instantiate a metal collision sound. Metal sound is created by
summing a handful of frequencies that danp out slower */
SrSound metal _collision =

SrinstantiateSound (collision, /1 sound cl ass
"anp", SR _CONSTANT, force, // anp depends on force
"n_freq", SR _CONSTANT, 50, /1 n_freq = 50
"max", SR _CONSTANT, 1000, /1 max_freqg = 1000
"base", SR_CONSTANT, 500, /1 base freq = 500

"danp_rati o",SR:CCNSTANT 1.0, // danp ratio = 1.0
NULL) ; /1 end of paraneter |ist

/* start up this instantiated sound at tine corresponding to
current frame */
SrStartSound (netal _collision, t);
} [// end of for each collisiom

} H”end of animation | oop

Figure 4. Sonic Scene Description for the collision of two cubes

11

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

We allowed our transformations to map motion parameters to any semitone in the
Western-based diatonic scaling system. By using simple transformations, however, we could also
force the music to obey musical rules such as conformation to a modal scale (e.g. the diatonic
minor scale in C). By keeping these compositional constraints as transformations, the system is
freed of musical bias at the lowest level, while till allowing rule-based composition if desired.

Updating musical pitches (which are mapped to time dependent variables) continuously in
time is both unrealistic and unnecessary. It is more sensible to sample every quarter, or half
second. By producing scores with equal length notes, associated constructs such as instrument
tempos can be handled simply by slurring notes to produce longer durations of constant pitches.

The musical scores produced from the transformations are immediately identifiable to
musicians. This however is only one method of performing, or rendering, the soundtrack. Using
MIDI devices, the output may be generated directly, without the need for an explicit musical score.
We have used such techniques to produce background music for a number of animations
(EXAMPLES).

RENDERING

The process of rendering sound in a spatial environment involves a series of modifications
to the sound. These are due to transformations from object space to microphone space,
auralization, and environmental effects. The transformation of sound from the object space to
microphone space is result of attenuation and delay due to the distance between them!l. Thiscan
be expressed as attenuation/delay nodes in the timbre tree.

A good deal of the work has been done in the area of auralization in virtual environments.
Several methods have been successfully implemented ranging from the simulation of Head
Related Transfer Functions (HRTFs) using Finite Impulse Response (FIR) filters based on
empirical data20 to heuristics based on simple psychoacoustical principals?l. All of these methods
share a common approach in that they filter a sound signal based on the position of a sound source
in avirtual space. Thus the directional effects of a listening device, whether it be a set of stereo
directional microphones or the ear represented by a set of HRTF filters, can simply be seen as yet
another timbre tree node.

The method used to create the environmental effectsis defined by an "environmenta” node
and could range from simple heuristics to a sophisticated treatment of acoustical theory. One
approach isto trace the sound energy in the environment using representations of objects that are

12

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

specifically designed for sound tracing since light waves and sound waves "see" different
representations of objects. For example, reflection, refraction, and transmission of each object can
be represented by 3-dimensional bidirectional reflectance distribution functions (BRDFs) which
are functions of the shape and material characteristics of the object.

final filtering
BRDF for B by microphone
from reflector
transmissivity to microphone
of C
objects in

environment

BRDF) BRDF of B

from source transmissivity

to reflector of A
& & timbre tree of
sound source sound emitted by
given by a timbre tree receiver source
(a) Environmental effects (b) Timbre tree with specialized rendering nodes

Figure 5. Environmental nodes appended to the timbre tree

By attaching these nodes to the timbre trees that represent individual sound and combining
the resultant trees, an entire scene to be rendered can be represented as a single timbre tree. This
tree will represent the sound heard by a given sound receiver and, when evaluated and sampled,
will result in the generation of the final soundtrack. Evaluation of timbre trees in the temporal
domain is much like evaluation of shade trees in the spatial domain. At each sample point in the
soundtrack, evaluation is performed by a post order traversal of the tree. The output from the root
of the tree is the computed value of the sound for that time sample point. Figure 5 illustrates the
use of specialized rendering nodesin describing a sonic scene to be rendered.

13

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123
EXAMPLES

We have made a number of animations to illustrate our approach. The basic philosophy
that was used in constructing timbre trees as well as the mapping between sound and motion was
not to restrict ourselves to the mappings implied by strict physical simulations.

The first example illustrates a process of synchronization that automates the function of a
"foley artist"22. In this case, we wanted to map the parameters of a physically-based motion of a
coin rolling on the floor to a sampled sound. The parameters that we had for the sound were
amplitude and pitch. We mapped the angular velocity to the amplitude based on the observation
that the energy of the interaction of the coin with the floor is proportional to the angular velocity.
We also mapped the surface normal to the amplitude. Physical analysis of the sound produced as
the coin starts to oscillate and comes to rest is rather complicated. However, this mapping givesthe
synchronization that we expect. The final soundtrack was produced using a composition of the two
mappings. Figure 6 shows the frames from the animation as well as the amplitude variation of the
sound produced.

-¢— — roling- — -pr-gt— — — — — - oscillaton — — — — p

amplitude ————

time .

Figure 6. Frames from the animation and the sound produced by a rolling coin

Figure 7 shows a frame from an animation where five chimes are being tossed about by
winds animated using physically-based modeling. Three types of sounds were generated: the
chimes themselves, the wind, and the background music. Using the timbre tree for a wind chime
discussed previously, chime sounds are produced for collision events that occur within the
simulation. For the wind sound, we used the wind timbre tree presented. Here the mapping is less

14

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

direct as the three dimensional vector field of the wind, which has no visible motion, has to be

mapped to the scalar wind force of the timbre tree. We chose to map the total wind force felt by
each of the chimes to the wind force of timbre tree.

Figure 7. Frame from an animation of wind chimes

15

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

2
N
2

L

3]

=

3

&

o

0

©

| time -

N
TR . 20 20
1y ﬁ ¥ ¥ i q 1
.) ¥ ¥ %". "_9‘\7‘\—7‘\.7‘ L 4 \-; %;
s \lgl\lﬁ.\l\lh}\\l -F-va.fFuF-f\\\l llx\\

#ﬁ - L L} _le fi' | :vf :vn’ I; l‘\]‘\ |n'l :‘I g’

ERS A

Figure 8. Motions of the physically-based wind chimes and the musical score they produced

&l

The musical score for the background music was generated by mapping the motions of
each of the five chimes every half second to individual notes (Figure 8). The top figure shows the
actual displacements of the chimes over time and the bottom figure shows the score generated by
the system. The scale corresponds to the discretization of the mapped parameters along pitch
(vertical) axes while the timing and duration of the notes corresponds to the discretization along the
time (horizontal) axes.

The motion for the famous animated lamp learning to limbo (Figure 9) was produced by
an experimental motion control system based on genetic programming. In listening to the squeaky
hinges of a real lamp, we noticed that the hinges produced a raspy sound whose pitch and
amplitude varied with angular velocity. Because of this, we chose a frequency and amplitude
modul ated sawtooth wave. Since squeaky joints seem to have different sounds when opening and
closing, the hinge has two squeak sounds associated with it, one for when the angular motionisin
a clockwise direction and another for when the motion is in the counter clockwise direction. The
base collision sound was produced with a Fourier synthesized timbre tree whose amplitude is
mapped to the collision force (Figure 10). The music for the animation was produced by mapping
the angular displacement of the hinges to notes of ablues scale.

16

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

Figure 9. "L*xo Learns to Limbo"

Timbre Tree for sqeaking
sound

Timbre Tree for base collision
sound

Fourier synthesized
collision sound

angular velocity -

angular velocity
direction

]
collision force

Y

Figure 10. Mapping motion of lamp to timbre trees

CONCLUSION

In the past, sounds have been given only a cursory review in the computer graphics
community and have been added to graphics aimost as an afterthought. It has become obvious that
the aural senses and the added impact of synchronized sound and images will play abigger rolein
providing a more complete experience. In this context, it isimportant that the sound design and its
use occur in conjunction with (and with the same level of importance as) the generation of motions
and images.

Sound has been a part of many domains such as computer music, human-computer
interaction, sonification, virtual environments, and recently in computer animation. The body of
knowledge amassed from these disciplines may give the impression that the work, asit relates to
computer graphics, is largely finished. But the quality and the effort needed to synchronize sound
to motion in computer animations and virtual environments attest to the fact that much work is

17

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

needed in integrating the domains of sounds and images. It is the purpose of this research to tackle
this integration problem. According to this philosophy, we have developed a system of sound
representation and synthesis using timbre trees, synchronization by mapping motion parameters to
sound parameters, and rendering by adding additional nodesto the final timbre tree.

Future extensions include more coupling between parameters of the motion and the
parameters of the timbre tree. For example, the motions of deformable objects can be used to
generate sounds (e.g. aflag snapping in the wind). Parameterizing sampled sounds require more
studies in what constitutes "generic" qualities of sounds so that they can be mapped to the events
that caused the sounds. The system can be extended to real-time by the use of a MIDI based
system where the sound generation is handled by dedicated hardware (e.g. a synthesizer or
sampler). We are in the process of developing such areal-time sound system to be used in virtual
environment applications.

ACKNOWLEDGEMENTS

We would like to thank the Naval Research Laboratory (NAVY N00014-94-K-2009) and
NASA Goddard Space Flight Center (NCC 5-43) for their support. We would also like to extend
warm appreciations to the students in the Computer Graphics Laboratory at the George
Washington University for all their enthusiasm and support.

REFERENCES
1 M. Mathews, The Technology of Computer Music, MIT Press, MA, 19609.

2. B. Vercoe, Csound: A manual for the Audio Processing System and Supporting
Programs, MIT MediaLab, MIT, MA, 1986.

3. F. Moore, Element of Computer Music, Prentice Hall, Englewood Cliffs, NJ., 1990.

4. R. Dannenberg, C. Fraley and P. Velikonj, "Fugue: A Functional Language for Sound
Synthesis," IEEE Computer, Vol. 24, No. 7, July 1991, pp. 36-42

5. C. Scaletti, "The Kyma/Platypus Computer Music Workstation" in The Well-Tempered
Object: Musical Applications of Object Oriented Software Technology, Stephen Travis
Pope, ed. MIT Press, 1991.

6. M. Blattner, D. Smikawa, and R. Greenburg, "Earcons and Icons. Their Structure and
Common Design Principles,” Human-Computer Interaction, Vol. 4, No. 1, pp. 11-44,
1989.

18

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

W. Gaver, "Synthesizing Auditory Icons,” Proc.of INTERCHI, 1993.

J. Lewis, "Automated Lip-Synch: Background and Techniques,” The Journal of
Visualization and Computer Animation, Val. 2, No. 4, pp. 118-122.

N. Magnenat Thalman and D. Thalman, Synthetic Actors in Computer Generated 3D
Films, Springer-Verlag, 1990.

T. Takala and J. Hahn, "Sound Rendering,” Proce. of SGGRAPH'92, ACM Computer
Graphics, Val. 26, No. 2, pp. 211-220.

T. Takala, J. Hahn, L. Gritz, J. Geigel, and J. W. Lee, "Using Physically-Based Models
and Genetic Algorithms for Functional Composition of Sound Signals, Synchronized to
Animated Motion," International Computer Music Conference (ICMC), Tokyo, Japan,
Sept. 10-15, 1993.

R. Cook, "Shade Trees," Proc. of SGGRAPH'84, ACM Computer Graphics, Vol. 18,
No. 3, pp. 195-206.

K. Perlin, "An Image Synthesizer," Proc. SSGGRAPH'85, ACM Computer Graphics,
Vol. 19, No. 3, pp. 287-296.

N. Fletcher and T. Rossing, The Physics of Musical Instruments, Springer-Verlag 1991.

J. Hahn, "Realistic Animation of Rigid Bodies," Proc. SGGRAPH'88, ACM Computer
Graphics, Vol. 22, No. 3, pp. 299-308.

J. Koza, Genetic Programming, MIT Press, Cambridge, MA, 1992.

K. Sims, "Artificial Evolution for Computer Graphics,” Proc. SSIGGRAPH'91, ACM
Computer Graphics, Vol. 25, No. 3, pp. 319-328, 1991.

S. Upstill, The RenderMan Companion, Pixar/Addison-Wesley, 1989.

J. Nakamula, T. Kaku, T. Noma and S. Yoshida, "Automatic Background Music
Generation Based on Actors Emotion and Motions," Proceedings of the First Pacific
Conference on Computer Graphics and Applications, Vol. 1, pp. 147-161, 1993.

E.M. Wenzel, "Localization in Virtual Acoustic Displays,” Presence: Teleoperators and
Virtual Environments, Vol. 1, pp. 80-107, 1992.

S. T. Pope and L. E. Fehlen, "The Use of 3-D Audio in a Synthetic Environment: An
Aural Renderer for a Distributed Virtual Reality System," Proc. IEEE VRAIS '93, pp.
176-182.

T. Zaza, Audio design: Sound Recording Techniques for Film and Video, Prentice-Hall,
1991

19

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

4 N
motion -f]— — -Ssynchronization—— - sound
motion @ —— - mapping ————p| timbre tree
parameters parameters
\ * y
Y
r . N
(image rendering) sound rendering

attach rendering
nodes

final timbre tree

evaluate tree

image sound

Figure 1. Integrating sound and motion

20

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

1. basic waveform: @

4)
+
2. making it a "noisy tone":
mean-freq @
- J
4)

3. later defining a subtree,
describing the continuously
varying activity of a busy bee:

nominal-freq

.

assigned randomly a behavioral,
4. initializing and using it: for each bee second-order
at the beginning ~ Markov process

Figure 2. Timbre tree design process for bee sounds

21

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

<«
@
low frequency
@ @ noise
(et (9
it D

number of
frequencies frequency range
(a) Timbre Tree for collision sound (b) Timbre Tree for wind sound

Figure 3. Timbre tree examples. The darkened nodes represent parameters

22

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

BRDF for B

objects in
environment

N

sound source
given by a timbre tree

(a) Environmental effects

S

receiver

final filtering
by microphone

from reflector
to microphone

BRDF) BRDF of B

transmissivity
of A

transmissivity
of C

from source
to reflector

timbre tree of
sound emitted by
source

(b) Timbre tree with specialized rendering nodes

Figure 5. Environmental nodes appended to the timbre tree

23

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

@ ﬁ% I HE =y R —— I —

-4— — roling- — Pprgt— — — — — - oscillaton — — — — p»

amplitude ————»

time .

Figure 6. Frames from the animation and the sound produced by a rolling coin

24

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

Figure 7. Frame from an animation of wind chimes

25

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

— displacement—»
/Qi
LA

time -
\ o)) ! JIIPNY
%ﬁ =S5 R TR i LEtEE
i h g N NIA AINDNINa (BRI o DN A !
EE: £ =SEES Sl SSSsS=ar

ERS A

Figure 8. Motions of the physically-based wind chimes and the musical score they produced

&l

26

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

Figure 9. "L*xo Learns to Limbo"

27

Journal of Visualization and Computer Animation, Volume 6, Issue No. 2, pp. 109-123

Timbre Tree for sqeaking
sound

Timbre Tree for base collision
sound

Fourier synthesized
collision sound

angular velocity
direction

|
collision force

Y

Figure 10. Mapping motion of lamp to timbre trees

28

